Problem 1310 XOR Queries of a Subarray
Table of Contents
Problem Statement
Link - Problem 1310
Question
You are given an array arr
of positive integers. You are also given the array queries
where queries[i] = [lefti, righti]
.
For each query i
compute the XOR of elements from lefti
to righti
(that is, arr[lefti] XOR arr[lefti + 1] XOR ... XOR arr[righti]
).
Return an array answer
where answer[i]
is the answer to the ith
query.
Example 1
Input: arr = [1,3,4,8], queries = [[0,1],[1,2],[0,3],[3,3]]
Output: [2,7,14,8]
Explanation:
The binary representation of the elements in the array are:
1 = 0001
3 = 0011
4 = 0100
8 = 1000
The XOR values for queries are:
[0,1] = 1 xor 3 = 2
[1,2] = 3 xor 4 = 7
[0,3] = 1 xor 3 xor 4 xor 8 = 14
[3,3] = 8
Example 2
Input: arr = [4,8,2,10], queries = [[2,3],[1,3],[0,0],[0,3]]
Output: [8,0,4,4]
Constraints
- 1 <=
arr.length
<= 3 * 104 - 1 <=
arr[i]
<= 109 queries[i].length
== 2- 0 <=
queries[i][0]
<=queries[i][1] < arr.length
Solution
class Solution {
public:
vector<int> xorQueries(vector<int>& arr, vector<vector<int>>& queries) {
int n = arr.size();
vector<int> prefixXOR(n);
vector<int> ans;
prefixXOR[0] = arr[0];
for (int i = 1; i < n; i++) {
prefixXOR[i] = prefixXOR[i - 1] ^ arr[i];
}
for (int i = 0; i < queries.size(); i++) {
if (queries[i][0] == 0) {
ans.push_back(prefixXOR[queries[i][1]]);
}
else {
ans.push_back(prefixXOR[queries[i][1]] ^ prefixXOR[queries[i][0] - 1]);
}
}
return ans;
}
};
Complexity Analysis
| Algorithm | Time Complexity | Space Complexity |
| ------------- | --------------- | ---------------- |
| Prefix XOR | O(n) | O(n) |
| Range compute | O(n) | O(1) |
Explanation
1. Intuition
The question wants us to find the XOR of elements from lefti
to righti
for each query.
By the property of XOR, we know that a XOR b XOR a = b
.
Hence XOR of elements from lefti
to righti
is equal to 0 to righti XOR 0 to lefti-1
.
By this property, we can compute any query by using the prefix XOR array.
2. Implementation
- Initialize a variable `n` to store the size of the array.
- Initialize a vector `prefixXOR` of size `n` to store the prefix XOR of the array.
- Initialize a vector `ans` to store the answer of the queries.
- Compute the prefix XOR of the array in the following manner
- Initialize the `prefixXOR[0]` as `arr[0]`.
- for `i` from `1` to `n-1`, compute `prefixXOR[i] = prefixXOR[i-1] XOR arr[i]`.
- For each query in the `queries` array, compute the answer in the following manner
- If `queries[i][0]` is `0`, then the answer is `prefixXOR[queries[i][1]]`.
- Else the answer is `prefixXOR[queries[i][1]] XOR prefixXOR[queries[i][0]-1]`.
- Return the answer vector.